

6th Meeting of the Advisory Council Max-Wertheimer Minerva Center for Cognitive Processes and Human Performance

Metacognitive regulation of accuracy and informativeness in memory reporting

Morris Goldsmith

With: Asher Koriat, Ainat Pansky

Graduate Students: Rakefet Ackerman, Einat Notea-Koren, Vered Galon

Institute of Information Processing and Decision Making University of Haifa

Two Types of Report Control

- <u>Report Option</u> Withholding particular items of information (responding "don't know" or "don't remember") in order to screen out wrong answers.
- <u>Grain Size</u> choosing a level of coarseness or generality at which the answer is unlikely to be wrong.

Retrieval ==> Monitoring ==> Control ==> Performance

Retention ("memory"):

the amount and quality of the information that can be retrieved.

Response criterion setting:

the confidence threshold set in accordance with competing demands for quantity and accuracy.

■ <u>Monitoring effectiveness:</u> (confidence ⇔ correctness)

the extent to which the assessed probabilities successfully differentiate correct from incorrect candidate answers.

■ <u>Control sensitivity:</u> (confidence ⇔ volunteering)

the extent to which the volunteering or withholding of answers is in fact based on the monitoring output.

Koriat and Goldsmith (1996 Psych. Rev.)

Empirical Evidence for Report Option

- Free vs. forced report
 - Accuracy increases substantially Quantity decreases slightly
- Manipulation of accuracy incentive
 - Accuracy increases further ⇔ Quantity decreases further
- Cut-off control mechanism on monitoring output
 - ➢ Confidence ⇔Volunteering Mean gamma ~ .95 !
 - **Report criterion accounts for over 90% of report decisions.**
 - **Estimated criterion level is sensitive to accuracy incentives.**
- Free report performance depends on monitoring effectiveness
 - Poor monitoring + matched quantity = poor accuracy

Koriat and Goldsmith (1996 Psych. Rev.)

Applications of Report Option

- Children's memory (Koriat et al., 2001; Roebers & Schneider, 2002)
- Ageing (Kelley & Sahakyan, 2003; Pansky et al., 2002; Rhodes & Kelley, 2005)
- Clinical populations (Danion et al., 2001; Koren et al., 2004, in press)
- Psychometric testing (Notea-Koren, in progress)
- Social cognition (Payne et al., 2001; DIP project)
- Changes in accuracy over time (Koriat & Goldsmith, in progress)
- Encoding specificity (Higham, 2002; Higham & Tam, 2005)

Control over Grain Size

What was the defendant holding when he threatened the deceased?

		<u>conf</u>	<u>cumulative</u>
A walking stick	not sure	60%	60%
A metal rod	not sure	25%	85%
A baseball bat	not sure	10%	95%

"I think it was a stick or club or something like that, yes—

some kind of club-like object ..."

almost certain

6:20 best guess

6:00 - 6:30

6:15 – 6:30 probably

highly likely

"Sometime in the early evening ..."

<u>definitely</u>

ACCURACY - INFORMATIVENESS TRADE-OFF !!!

Yaniv & Foster (1995, 1997)

Experimental Design (Goldsmith et al., 2002, JEP:General)

PHASE 1 -- <u>Forced grain size at two grain levels</u>

- **EXAMPLE:** When did Neil Armstrong walk on the moon?
 - A) Specify a 3-year interval: From _____ ____
 - B) Specify a 10-year interval: From _____ ____
- EXAMPLE: How many chromosomes are there in the nucleus of a human cell?
 - A) Give a specific number: _____
 - B) Specify a 20-chromosome interval: _____ ___
- PHASE 2 -- <u>Free choice of grain size</u>
 - For each item, choose the answer that you would prefer to provide if you were ''an expert witness testifying before a government committee.''

Results

- Exps. 1, 2, & 3
 - Chose <u>fine</u> 40%; chose <u>coarse</u> 60%
 - Achieved accuracy = .60
 [p(fine correct) = .32; p(coarse correct) = .75]
 - ➢ Control: fine confidence ⇔ grain choice: Gamma = .82
 - Fine-confidence report criterion accounts for 88% of actual choices
 - Criterion estimates sensitive to informativeness incentive manipulation: .58 (high incentive) vs. .74 (low incentive)

A "satisficing model" (cf. Simon, 1956)

Goldsmith et al. (2002)

Results

REJECTED:

<u>Relative Subjective Expected-Utility model</u>:

Goldsmith et al. (2002)

Strategic Regulation of Memory Grain Size over Time

Goldsmith et al. (2005, JML special issue)

Control of Grain Size and Report Option

- **Both involve an accuracy informativeness trade-off.**
- Both involve monitoring the correctness of candidate answers.
- Both involve setting a report criterion (accuracy satisficing) per competing incentives for accuracy and informativeness.

> A <u>single</u> integrated model?

Control of Grain Size and Report Option

Goldsmith et al. (in progress)

A Complication – Continuous grain control

- PHASE 1 -- Forced grain size at two grain levels
 - EXAMPLE: When did Neil Armstrong walk on the moon?
 A) Specify a 3-year interval: 1948-1951 (conf = 0)
 B) Source for the second seco
 - B) Specify a 10-year interval: 1945-1955 (conf = 10%)
- But, what if:
 - Specify a 20-year interval: 1940-1960 (conf = 40%)
 - Specify a 50-year interval: 1930-1980 (conf = 70%)
 - Specify a 150-year interval: 1850-2000 (conf = 100%)

Goldsmith et al. (in progress)

Evidence for Informativeness Criterion

Retention Interval (% DK) Immediate (13%) One day (17%) One week (24%)

Goldsmith et al. (in progress)

Evidence for Informativeness Criterion

Retention Interval (% DK)	Normalized Width	
Immediate (13%)	.74	
One day (17%)	.71	
One week (24%)	.85	
Control	1.48*	

Normalized width = (actual width) / midpoint *Significantly different from experimental conditions

Evidence for Informativeness Criterion

Retention Interval (% DK)	Normalized Width	Accuracy Difference
Immediate (13%)	.74	+.19*
One day (17%)	.71	+.07*
One week (24%)	.85	.00
Control	1.48*	

Normalized width = (actual width) / midpoint *Significantly different from experimental conditions

Control of Grain Size and Report Option

Conclusions

- Report option and grain size are both important means of regulating accuracy and informativeness of memory reports.
- We must understand such regulation in order to understand the factors underlying memory performance in real-life settings.
- Doing so requires examination of cognitive, metacognitive, and social-pragmatic contributions to memory performance.
- More work remains to be done.